/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['./when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-f2a06374', './Cartesian2-16a61632', './BoundingSphere-d018a565', './Cartesian4-5af5bb24', './RuntimeError-ba10bc3e', './WebGLConstants-4c11ee5f', './ComponentDatatype-5862616f', './GeometryAttribute-1e248a71', './PrimitiveType-97893bc7', './FeatureDetection-7bd32c34', './Transforms-cd52cbaf', './buildModuleUrl-e7952659', './GeometryAttributes-aacecde6', './IndexDatatype-9435b55f', './IntersectionTests-813bb943', './Plane-aa6c3ce5', './arrayFill-9766fb2e', './GeometryOffsetAttribute-999fc023', './VertexFormat-fe4db402', './arrayRemoveDuplicates-2869246d', './EllipsoidTangentPlane-33ed15f1', './EllipsoidRhumbLine-87f26cac', './earcut-2.2.1-b404d9e6', './PolygonPipeline-01a00202', './PolylineVolumeGeometryLibrary-dd05fa5f', './EllipsoidGeodesic-9ef071e0', './PolylinePipeline-f937854b', './CorridorGeometryLibrary-5468a06b'], function (when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, Cartesian4, RuntimeError, WebGLConstants, ComponentDatatype, GeometryAttribute, PrimitiveType, FeatureDetection, Transforms, buildModuleUrl, GeometryAttributes, IndexDatatype, IntersectionTests, Plane, arrayFill, GeometryOffsetAttribute, VertexFormat, arrayRemoveDuplicates, EllipsoidTangentPlane, EllipsoidRhumbLine, earcut2_2_1, PolygonPipeline, PolylineVolumeGeometryLibrary, EllipsoidGeodesic, PolylinePipeline, CorridorGeometryLibrary) { 'use strict'; var cartesian1 = new Cartographic.Cartesian3(); var cartesian2 = new Cartographic.Cartesian3(); var cartesian3 = new Cartographic.Cartesian3(); var cartesian4 = new Cartographic.Cartesian3(); var cartesian5 = new Cartographic.Cartesian3(); var cartesian6 = new Cartographic.Cartesian3(); var scratch1 = new Cartographic.Cartesian3(); var scratch2 = new Cartographic.Cartesian3(); function scaleToSurface(positions, ellipsoid) { for (var i = 0; i < positions.length; i++) { positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]); } return positions; } function addNormals(attr, normal, left, front, back, vertexFormat) { var normals = attr.normals; var tangents = attr.tangents; var bitangents = attr.bitangents; var forward = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(left, normal, scratch1), scratch1); if (vertexFormat.normal) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, front, back); } if (vertexFormat.tangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, forward, front, back); } if (vertexFormat.bitangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, left, front, back); } } function combine(computedPositions, vertexFormat, ellipsoid) { var positions = computedPositions.positions; var corners = computedPositions.corners; var endPositions = computedPositions.endPositions; var computedLefts = computedPositions.lefts; var computedNormals = computedPositions.normals; var attributes = new GeometryAttributes.GeometryAttributes(); var corner; var leftCount = 0; var rightCount = 0; var i; var indicesLength = 0; var length; for (i = 0; i < positions.length; i += 2) { length = positions[i].length - 3; leftCount += length; //subtracting 3 to account for duplicate points at corners indicesLength += length*2; rightCount += positions[i + 1].length - 3; } leftCount += 3; //add back count for end positions rightCount += 3; for (i = 0; i < corners.length; i++) { corner = corners[i]; var leftSide = corners[i].leftPositions; if (when.defined(leftSide)) { length = leftSide.length; leftCount += length; indicesLength += length; } else { length = corners[i].rightPositions.length; rightCount += length; indicesLength += length; } } var addEndPositions = when.defined(endPositions); var endPositionLength; if (addEndPositions) { endPositionLength = endPositions[0].length - 3; leftCount += endPositionLength; rightCount += endPositionLength; endPositionLength /= 3; indicesLength += endPositionLength * 6; } var size = leftCount + rightCount; var finalPositions = new Float64Array(size); var normals = (vertexFormat.normal) ? new Float32Array(size) : undefined; var tangents = (vertexFormat.tangent) ? new Float32Array(size) : undefined; var bitangents = (vertexFormat.bitangent) ? new Float32Array(size) : undefined; var attr = { normals : normals, tangents : tangents, bitangents : bitangents }; var front = 0; var back = size - 1; var UL, LL, UR, LR; var normal = cartesian1; var left = cartesian2; var rightPos, leftPos; var halfLength = endPositionLength / 2; var indices = IndexDatatype.IndexDatatype.createTypedArray(size / 3, indicesLength); var index = 0; if (addEndPositions) { // add rounded end leftPos = cartesian3; rightPos = cartesian4; var firstEndPositions = endPositions[0]; normal = Cartographic.Cartesian3.fromArray(computedNormals, 0, normal); left = Cartographic.Cartesian3.fromArray(computedLefts, 0, left); for (i = 0; i < halfLength; i++) { leftPos = Cartographic.Cartesian3.fromArray(firstEndPositions, (halfLength - 1 - i) * 3, leftPos); rightPos = Cartographic.Cartesian3.fromArray(firstEndPositions, (halfLength + i) * 3, rightPos); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, leftPos, undefined, back); addNormals(attr, normal, left, front, back, vertexFormat); LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } } var posIndex = 0; var compIndex = 0; var rightEdge = positions[posIndex++]; //add first two edges var leftEdge = positions[posIndex++]; finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); left = Cartographic.Cartesian3.fromArray(computedLefts, compIndex, left); var rightNormal; var leftNormal; length = leftEdge.length - 3; for (i = 0; i < length; i += 3) { rightNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(rightEdge, i, scratch1), scratch1); leftNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(leftEdge, length - i, scratch2), scratch2); normal = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.add(rightNormal, leftNormal, normal), normal); addNormals(attr, normal, left, front, back, vertexFormat); LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } rightNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(rightEdge, length, scratch1), scratch1); leftNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(leftEdge, length, scratch2), scratch2); normal = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.add(rightNormal, leftNormal, normal), normal); compIndex += 3; for (i = 0; i < corners.length; i++) { var j; corner = corners[i]; var l = corner.leftPositions; var r = corner.rightPositions; var pivot; var start; var outsidePoint = cartesian6; var previousPoint = cartesian3; var nextPoint = cartesian4; normal = Cartographic.Cartesian3.fromArray(computedNormals, compIndex, normal); if (when.defined(l)) { addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; pivot = LR; start = UR; for (j = 0; j < l.length / 3; j++) { outsidePoint = Cartographic.Cartesian3.fromArray(l, j * 3, outsidePoint); indices[index++] = pivot; indices[index++] = start - j - 1; indices[index++] = start - j; CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, outsidePoint, undefined, back); previousPoint = Cartographic.Cartesian3.fromArray(finalPositions, (start - j - 1) * 3, previousPoint); nextPoint = Cartographic.Cartesian3.fromArray(finalPositions, pivot * 3, nextPoint); left = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.subtract(previousPoint, nextPoint, left), left); addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; } outsidePoint = Cartographic.Cartesian3.fromArray(finalPositions, pivot * 3, outsidePoint); previousPoint = Cartographic.Cartesian3.subtract(Cartographic.Cartesian3.fromArray(finalPositions, (start) * 3, previousPoint), outsidePoint, previousPoint); nextPoint = Cartographic.Cartesian3.subtract(Cartographic.Cartesian3.fromArray(finalPositions, (start - j) * 3, nextPoint), outsidePoint, nextPoint); left = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.add(previousPoint, nextPoint, left), left); addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; } else { addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; pivot = UR; start = LR; for (j = 0; j < r.length / 3; j++) { outsidePoint = Cartographic.Cartesian3.fromArray(r, j * 3, outsidePoint); indices[index++] = pivot; indices[index++] = start + j; indices[index++] = start + j + 1; CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, outsidePoint, front); previousPoint = Cartographic.Cartesian3.fromArray(finalPositions, pivot * 3, previousPoint); nextPoint = Cartographic.Cartesian3.fromArray(finalPositions, (start + j) * 3, nextPoint); left = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.subtract(previousPoint, nextPoint, left), left); addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; } outsidePoint = Cartographic.Cartesian3.fromArray(finalPositions, pivot * 3, outsidePoint); previousPoint = Cartographic.Cartesian3.subtract(Cartographic.Cartesian3.fromArray(finalPositions, (start + j) * 3, previousPoint), outsidePoint, previousPoint); nextPoint = Cartographic.Cartesian3.subtract(Cartographic.Cartesian3.fromArray(finalPositions, start * 3, nextPoint), outsidePoint, nextPoint); left = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.negate(Cartographic.Cartesian3.add(nextPoint, previousPoint, left), left), left); addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; } rightEdge = positions[posIndex++]; leftEdge = positions[posIndex++]; rightEdge.splice(0, 3); //remove duplicate points added by corner leftEdge.splice(leftEdge.length - 3, 3); finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); length = leftEdge.length - 3; compIndex += 3; left = Cartographic.Cartesian3.fromArray(computedLefts, compIndex, left); for (j = 0; j < leftEdge.length; j += 3) { rightNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(rightEdge, j, scratch1), scratch1); leftNormal = ellipsoid.geodeticSurfaceNormal(Cartographic.Cartesian3.fromArray(leftEdge, length - j, scratch2), scratch2); normal = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.add(rightNormal, leftNormal, normal), normal); addNormals(attr, normal, left, front, back, vertexFormat); LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } front -= 3; back += 3; } normal = Cartographic.Cartesian3.fromArray(computedNormals, computedNormals.length - 3, normal); addNormals(attr, normal, left, front, back, vertexFormat); if (addEndPositions) { // add rounded end front += 3; back -= 3; leftPos = cartesian3; rightPos = cartesian4; var lastEndPositions = endPositions[1]; for (i = 0; i < halfLength; i++) { leftPos = Cartographic.Cartesian3.fromArray(lastEndPositions, (endPositionLength - i - 1) * 3, leftPos); rightPos = Cartographic.Cartesian3.fromArray(lastEndPositions, i * 3, rightPos); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, leftPos, undefined, back); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); addNormals(attr, normal, left, front, back, vertexFormat); LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } } attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : finalPositions }); if (vertexFormat.st) { var st = new Float32Array(size / 3 * 2); var rightSt; var leftSt; var stIndex = 0; if (addEndPositions) { leftCount /= 3; rightCount /= 3; var theta = Math.PI / (endPositionLength + 1); leftSt = 1 / (leftCount - endPositionLength + 1); rightSt = 1 / (rightCount - endPositionLength + 1); var a; var halfEndPos = endPositionLength / 2; for (i = halfEndPos + 1; i < endPositionLength + 1; i++) { // lower left rounded end a = _Math.CesiumMath.PI_OVER_TWO + theta * i; st[stIndex++] = rightSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = 1; i < rightCount - endPositionLength + 1; i++) { // bottom edge st[stIndex++] = i * rightSt; st[stIndex++] = 0; } for (i = endPositionLength; i > halfEndPos; i--) { // lower right rounded end a = _Math.CesiumMath.PI_OVER_TWO - i * theta; st[stIndex++] = 1 - rightSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = halfEndPos; i > 0; i--) { // upper right rounded end a = _Math.CesiumMath.PI_OVER_TWO - theta * i; st[stIndex++] = 1 - leftSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = leftCount - endPositionLength; i > 0; i--) { // top edge st[stIndex++] = i * leftSt; st[stIndex++] = 1; } for (i = 1; i < halfEndPos + 1; i++) { // upper left rounded end a = _Math.CesiumMath.PI_OVER_TWO + theta * i; st[stIndex++] = leftSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } } else { leftCount /= 3; rightCount /= 3; leftSt = 1 / (leftCount - 1); rightSt = 1 / (rightCount - 1); for (i = 0; i < rightCount; i++) { // bottom edge st[stIndex++] = i * rightSt; st[stIndex++] = 0; } for (i = leftCount; i > 0; i--) { // top edge st[stIndex++] = (i - 1) * leftSt; st[stIndex++] = 1; } } attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 2, values : st }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : attr.normals }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : attr.tangents }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : attr.bitangents }); } return { attributes : attributes, indices : indices }; } function extrudedAttributes(attributes, vertexFormat) { if (!vertexFormat.normal && !vertexFormat.tangent && !vertexFormat.bitangent && !vertexFormat.st) { return attributes; } var positions = attributes.position.values; var topNormals; var topBitangents; if (vertexFormat.normal || vertexFormat.bitangent) { topNormals = attributes.normal.values; topBitangents = attributes.bitangent.values; } var size = attributes.position.values.length / 18; var threeSize = size * 3; var twoSize = size * 2; var sixSize = threeSize * 2; var i; if (vertexFormat.normal || vertexFormat.bitangent || vertexFormat.tangent) { var normals = (vertexFormat.normal) ? new Float32Array(threeSize * 6) : undefined; var tangents = (vertexFormat.tangent) ? new Float32Array(threeSize * 6) : undefined; var bitangents = (vertexFormat.bitangent) ? new Float32Array(threeSize * 6) : undefined; var topPosition = cartesian1; var bottomPosition = cartesian2; var previousPosition = cartesian3; var normal = cartesian4; var tangent = cartesian5; var bitangent = cartesian6; var attrIndex = sixSize; for (i = 0; i < threeSize; i += 3) { var attrIndexOffset = attrIndex + sixSize; topPosition = Cartographic.Cartesian3.fromArray(positions, i, topPosition); bottomPosition = Cartographic.Cartesian3.fromArray(positions, i + threeSize, bottomPosition); previousPosition = Cartographic.Cartesian3.fromArray(positions, (i + 3) % threeSize, previousPosition); bottomPosition = Cartographic.Cartesian3.subtract(bottomPosition, topPosition, bottomPosition); previousPosition = Cartographic.Cartesian3.subtract(previousPosition, topPosition, previousPosition); normal = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(bottomPosition, previousPosition, normal), normal); if (vertexFormat.normal) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset + 3); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex + 3); } if (vertexFormat.tangent || vertexFormat.bitangent) { bitangent = Cartographic.Cartesian3.fromArray(topNormals, i, bitangent); if (vertexFormat.bitangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, bitangent, attrIndexOffset); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, bitangent, attrIndexOffset + 3); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, bitangent, attrIndex); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, bitangent, attrIndex + 3); } if (vertexFormat.tangent) { tangent = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(bitangent, normal, tangent), tangent); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndexOffset); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndexOffset + 3); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex + 3); } } attrIndex += 6; } if (vertexFormat.normal) { normals.set(topNormals); //top for (i = 0; i < threeSize; i += 3) { //bottom normals normals[i + threeSize] = -topNormals[i]; normals[i + threeSize + 1] = -topNormals[i + 1]; normals[i + threeSize + 2] = -topNormals[i + 2]; } attributes.normal.values = normals; } else { attributes.normal = undefined; } if (vertexFormat.bitangent) { bitangents.set(topBitangents); //top bitangents.set(topBitangents, threeSize); //bottom attributes.bitangent.values = bitangents; } else { attributes.bitangent = undefined; } if (vertexFormat.tangent) { var topTangents = attributes.tangent.values; tangents.set(topTangents); //top tangents.set(topTangents, threeSize); //bottom attributes.tangent.values = tangents; } } if (vertexFormat.st) { var topSt = attributes.st.values; var st = new Float32Array(twoSize * 6); st.set(topSt); //top st.set(topSt, twoSize); //bottom var index = twoSize * 2; for ( var j = 0; j < 2; j++) { st[index++] = topSt[0]; st[index++] = topSt[1]; for (i = 2; i < twoSize; i += 2) { var s = topSt[i]; var t = topSt[i + 1]; st[index++] = s; st[index++] = t; st[index++] = s; st[index++] = t; } st[index++] = topSt[0]; st[index++] = topSt[1]; } attributes.st.values = st; } return attributes; } function addWallPositions(positions, index, wallPositions) { wallPositions[index++] = positions[0]; wallPositions[index++] = positions[1]; wallPositions[index++] = positions[2]; for ( var i = 3; i < positions.length; i += 3) { var x = positions[i]; var y = positions[i + 1]; var z = positions[i + 2]; wallPositions[index++] = x; wallPositions[index++] = y; wallPositions[index++] = z; wallPositions[index++] = x; wallPositions[index++] = y; wallPositions[index++] = z; } wallPositions[index++] = positions[0]; wallPositions[index++] = positions[1]; wallPositions[index++] = positions[2]; return wallPositions; } function computePositionsExtruded(params, vertexFormat) { var topVertexFormat = new VertexFormat.VertexFormat({ position : vertexFormat.position, normal : (vertexFormat.normal || vertexFormat.bitangent || params.shadowVolume), tangent : vertexFormat.tangent, bitangent : (vertexFormat.normal || vertexFormat.bitangent), st : vertexFormat.st }); var ellipsoid = params.ellipsoid; var computedPositions = CorridorGeometryLibrary.CorridorGeometryLibrary.computePositions(params); var attr = combine(computedPositions, topVertexFormat, ellipsoid); var height = params.height; var extrudedHeight = params.extrudedHeight; var attributes = attr.attributes; var indices = attr.indices; var positions = attributes.position.values; var length = positions.length; var newPositions = new Float64Array(length * 6); var extrudedPositions = new Float64Array(length); extrudedPositions.set(positions); var wallPositions = new Float64Array(length * 4); positions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(positions, height, ellipsoid); wallPositions = addWallPositions(positions, 0, wallPositions); extrudedPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(extrudedPositions, extrudedHeight, ellipsoid); wallPositions = addWallPositions(extrudedPositions, length * 2, wallPositions); newPositions.set(positions); newPositions.set(extrudedPositions, length); newPositions.set(wallPositions, length * 2); attributes.position.values = newPositions; attributes = extrudedAttributes(attributes, vertexFormat); var i; var size = length / 3; if (params.shadowVolume) { var topNormals = attributes.normal.values; length = topNormals.length; var extrudeNormals = new Float32Array(length * 6); for (i = 0; i < length; i ++) { topNormals[i] = -topNormals[i]; } //only get normals for bottom layer that's going to be pushed down extrudeNormals.set(topNormals, length); //bottom face extrudeNormals = addWallPositions(topNormals, length*4, extrudeNormals); //bottom wall attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : extrudeNormals }); if (!vertexFormat.normal) { attributes.normal = undefined; } } if (when.defined(params.offsetAttribute)) { var applyOffset = new Uint8Array(size * 6); if (params.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) { applyOffset = arrayFill.arrayFill(applyOffset, 1, 0, size); // top face applyOffset = arrayFill.arrayFill(applyOffset, 1, size*2, size * 4); // top wall } else { var applyOffsetValue = params.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; applyOffset = arrayFill.arrayFill(applyOffset, applyOffsetValue); } attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute : 1, values: applyOffset }); } var iLength = indices.length; var twoSize = size + size; var newIndices = IndexDatatype.IndexDatatype.createTypedArray(newPositions.length / 3, iLength * 2 + twoSize * 3); newIndices.set(indices); var index = iLength; for (i = 0; i < iLength; i += 3) { // bottom indices var v0 = indices[i]; var v1 = indices[i + 1]; var v2 = indices[i + 2]; newIndices[index++] = v2 + size; newIndices[index++] = v1 + size; newIndices[index++] = v0 + size; } var UL, LL, UR, LR; for (i = 0; i < twoSize; i += 2) { //wall indices UL = i + twoSize; LL = UL + twoSize; UR = UL + 1; LR = LL + 1; newIndices[index++] = UL; newIndices[index++] = LL; newIndices[index++] = UR; newIndices[index++] = UR; newIndices[index++] = LL; newIndices[index++] = LR; } return { attributes : attributes, indices : newIndices }; } var scratchCartesian1 = new Cartographic.Cartesian3(); var scratchCartesian2 = new Cartographic.Cartesian3(); var scratchCartographic = new Cartographic.Cartographic(); function computeOffsetPoints(position1, position2, ellipsoid, halfWidth, min, max) { // Compute direction of offset the point var direction = Cartographic.Cartesian3.subtract(position2, position1, scratchCartesian1); Cartographic.Cartesian3.normalize(direction, direction); var normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2); var offsetDirection = Cartographic.Cartesian3.cross(direction, normal, scratchCartesian1); Cartographic.Cartesian3.multiplyByScalar(offsetDirection, halfWidth, offsetDirection); var minLat = min.latitude; var minLon = min.longitude; var maxLat = max.latitude; var maxLon = max.longitude; // Compute 2 offset points Cartographic.Cartesian3.add(position1, offsetDirection, scratchCartesian2); ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic); var lat = scratchCartographic.latitude; var lon = scratchCartographic.longitude; minLat = Math.min(minLat, lat); minLon = Math.min(minLon, lon); maxLat = Math.max(maxLat, lat); maxLon = Math.max(maxLon, lon); Cartographic.Cartesian3.subtract(position1, offsetDirection, scratchCartesian2); ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; minLat = Math.min(minLat, lat); minLon = Math.min(minLon, lon); maxLat = Math.max(maxLat, lat); maxLon = Math.max(maxLon, lon); min.latitude = minLat; min.longitude = minLon; max.latitude = maxLat; max.longitude = maxLon; } var scratchCartesianOffset = new Cartographic.Cartesian3(); var scratchCartesianEnds = new Cartographic.Cartesian3(); var scratchCartographicMin = new Cartographic.Cartographic(); var scratchCartographicMax = new Cartographic.Cartographic(); function computeRectangle(positions, ellipsoid, width, cornerType, result) { positions = scaleToSurface(positions, ellipsoid); var cleanPositions = arrayRemoveDuplicates.arrayRemoveDuplicates(positions, Cartographic.Cartesian3.equalsEpsilon); var length = cleanPositions.length; if (length < 2 || width <= 0) { return new Cartesian2.Rectangle(); } var halfWidth = width * 0.5; scratchCartographicMin.latitude = Number.POSITIVE_INFINITY; scratchCartographicMin.longitude = Number.POSITIVE_INFINITY; scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY; scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY; var lat, lon; if (cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED) { // Compute start cap var first = cleanPositions[0]; Cartographic.Cartesian3.subtract(first, cleanPositions[1], scratchCartesianOffset); Cartographic.Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset); Cartographic.Cartesian3.multiplyByScalar(scratchCartesianOffset, halfWidth, scratchCartesianOffset); Cartographic.Cartesian3.add(first, scratchCartesianOffset, scratchCartesianEnds); ellipsoid.cartesianToCartographic(scratchCartesianEnds, scratchCartographic); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; scratchCartographicMin.latitude = Math.min(scratchCartographicMin.latitude, lat); scratchCartographicMin.longitude = Math.min(scratchCartographicMin.longitude, lon); scratchCartographicMax.latitude = Math.max(scratchCartographicMax.latitude, lat); scratchCartographicMax.longitude = Math.max(scratchCartographicMax.longitude, lon); } // Compute the rest for (var i = 0; i < length-1; ++i) { computeOffsetPoints(cleanPositions[i], cleanPositions[i+1], ellipsoid, halfWidth, scratchCartographicMin, scratchCartographicMax); } // Compute ending point var last = cleanPositions[length-1]; Cartographic.Cartesian3.subtract(last, cleanPositions[length-2], scratchCartesianOffset); Cartographic.Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset); Cartographic.Cartesian3.multiplyByScalar(scratchCartesianOffset, halfWidth, scratchCartesianOffset); Cartographic.Cartesian3.add(last, scratchCartesianOffset, scratchCartesianEnds); computeOffsetPoints(last, scratchCartesianEnds, ellipsoid, halfWidth, scratchCartographicMin, scratchCartographicMax); if (cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED) { // Compute end cap ellipsoid.cartesianToCartographic(scratchCartesianEnds, scratchCartographic); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; scratchCartographicMin.latitude = Math.min(scratchCartographicMin.latitude, lat); scratchCartographicMin.longitude = Math.min(scratchCartographicMin.longitude, lon); scratchCartographicMax.latitude = Math.max(scratchCartographicMax.latitude, lat); scratchCartographicMax.longitude = Math.max(scratchCartographicMax.longitude, lon); } var rectangle = when.defined(result) ? result : new Cartesian2.Rectangle(); rectangle.north = scratchCartographicMax.latitude; rectangle.south = scratchCartographicMin.latitude; rectangle.east = scratchCartographicMax.longitude; rectangle.west = scratchCartographicMin.longitude; return rectangle; } /** * A description of a corridor. Corridor geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}. * * @alias CorridorGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor. * @param {Number} options.width The distance between the edges of the corridor in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {Number} [options.height=0] The distance in meters between the ellipsoid surface and the positions. * @param {Number} [options.extrudedHeight] The distance in meters between the ellipsoid surface and the extruded face. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * * @see CorridorGeometry.createGeometry * @see Packable * * @demo {@link https://sandcastle.cesium.com/index.html?src=Corridor.html|Cesium Sandcastle Corridor Demo} * * @example * var corridor = new Cesium.CorridorGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]), * width : 100000 * }); */ function CorridorGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); var positions = options.positions; var width = options.width; //>>includeStart('debug', pragmas.debug); Check.Check.defined('options.positions', positions); Check.Check.defined('options.width', width); //>>includeEnd('debug'); var height = when.defaultValue(options.height, 0.0); var extrudedHeight = when.defaultValue(options.extrudedHeight, height); this._positions = positions; this._ellipsoid = Cartesian2.Ellipsoid.clone(when.defaultValue(options.ellipsoid, Cartesian2.Ellipsoid.WGS84)); this._vertexFormat = VertexFormat.VertexFormat.clone(when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT)); this._width = width; this._height = Math.max(height, extrudedHeight); this._extrudedHeight = Math.min(height, extrudedHeight); this._cornerType = when.defaultValue(options.cornerType, PolylineVolumeGeometryLibrary.CornerType.ROUNDED); this._granularity = when.defaultValue(options.granularity, _Math.CesiumMath.RADIANS_PER_DEGREE); this._shadowVolume = when.defaultValue(options.shadowVolume, false); this._workerName = 'createCorridorGeometry'; this._offsetAttribute = options.offsetAttribute; this._rectangle = undefined; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = 1 + positions.length * Cartographic.Cartesian3.packedLength + Cartesian2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 7; } /** * Stores the provided instance into the provided array. * * @param {CorridorGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ CorridorGeometry.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); var positions = value._positions; var length = positions.length; array[startingIndex++] = length; for (var i = 0; i < length; ++i, startingIndex += Cartographic.Cartesian3.packedLength) { Cartographic.Cartesian3.pack(positions[i], array, startingIndex); } Cartesian2.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Cartesian2.Ellipsoid.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._width; array[startingIndex++] = value._height; array[startingIndex++] = value._extrudedHeight; array[startingIndex++] = value._cornerType; array[startingIndex++] = value._granularity; array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0; array[startingIndex] = when.defaultValue(value._offsetAttribute, -1); return array; }; var scratchEllipsoid = Cartesian2.Ellipsoid.clone(Cartesian2.Ellipsoid.UNIT_SPHERE); var scratchVertexFormat = new VertexFormat.VertexFormat(); var scratchOptions = { positions : undefined, ellipsoid : scratchEllipsoid, vertexFormat : scratchVertexFormat, width : undefined, height : undefined, extrudedHeight : undefined, cornerType : undefined, granularity : undefined, shadowVolume: undefined, offsetAttribute: undefined }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CorridorGeometry} [result] The object into which to store the result. * @returns {CorridorGeometry} The modified result parameter or a new CorridorGeometry instance if one was not provided. */ CorridorGeometry.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); var length = array[startingIndex++]; var positions = new Array(length); for (var i = 0; i < length; ++i, startingIndex += Cartographic.Cartesian3.packedLength) { positions[i] = Cartographic.Cartesian3.unpack(array, startingIndex); } var ellipsoid = Cartesian2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Cartesian2.Ellipsoid.packedLength; var vertexFormat = VertexFormat.VertexFormat.unpack(array, startingIndex, scratchVertexFormat); startingIndex += VertexFormat.VertexFormat.packedLength; var width = array[startingIndex++]; var height = array[startingIndex++]; var extrudedHeight = array[startingIndex++]; var cornerType = array[startingIndex++]; var granularity = array[startingIndex++]; var shadowVolume = array[startingIndex++] === 1.0; var offsetAttribute = array[startingIndex]; if (!when.defined(result)) { scratchOptions.positions = positions; scratchOptions.width = width; scratchOptions.height = height; scratchOptions.extrudedHeight = extrudedHeight; scratchOptions.cornerType = cornerType; scratchOptions.granularity = granularity; scratchOptions.shadowVolume = shadowVolume; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new CorridorGeometry(scratchOptions); } result._positions = positions; result._ellipsoid = Cartesian2.Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._width = width; result._height = height; result._extrudedHeight = extrudedHeight; result._cornerType = cornerType; result._granularity = granularity; result._shadowVolume = shadowVolume; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the bounding rectangle given the provided options * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor. * @param {Number} options.width The distance between the edges of the corridor in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * @param {Rectangle} [result] An object in which to store the result. * * @returns {Rectangle} The result rectangle. */ CorridorGeometry.computeRectangle = function(options, result) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); var positions = options.positions; var width = options.width; //>>includeStart('debug', pragmas.debug); Check.Check.defined('options.positions', positions); Check.Check.defined('options.width', width); //>>includeEnd('debug'); var ellipsoid = when.defaultValue(options.ellipsoid, Cartesian2.Ellipsoid.WGS84); var cornerType = when.defaultValue(options.cornerType, PolylineVolumeGeometryLibrary.CornerType.ROUNDED); return computeRectangle(positions, ellipsoid, width, cornerType, result); }; /** * Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere. * * @param {CorridorGeometry} corridorGeometry A description of the corridor. * @returns {Geometry|undefined} The computed vertices and indices. */ CorridorGeometry.createGeometry = function(corridorGeometry) { var positions = corridorGeometry._positions; var width = corridorGeometry._width; var ellipsoid = corridorGeometry._ellipsoid; positions = scaleToSurface(positions, ellipsoid); var cleanPositions = arrayRemoveDuplicates.arrayRemoveDuplicates(positions, Cartographic.Cartesian3.equalsEpsilon); if ((cleanPositions.length < 2) || (width <= 0)) { return; } var height = corridorGeometry._height; var extrudedHeight = corridorGeometry._extrudedHeight; var extrude = !_Math.CesiumMath.equalsEpsilon(height, extrudedHeight, 0, _Math.CesiumMath.EPSILON2); var vertexFormat = corridorGeometry._vertexFormat; var params = { ellipsoid : ellipsoid, positions : cleanPositions, width : width, cornerType : corridorGeometry._cornerType, granularity : corridorGeometry._granularity, saveAttributes: true }; var attr; if (extrude) { params.height = height; params.extrudedHeight = extrudedHeight; params.shadowVolume = corridorGeometry._shadowVolume; params.offsetAttribute = corridorGeometry._offsetAttribute; attr = computePositionsExtruded(params, vertexFormat); } else { var computedPositions = CorridorGeometryLibrary.CorridorGeometryLibrary.computePositions(params); attr = combine(computedPositions, vertexFormat, ellipsoid); attr.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(attr.attributes.position.values, height, ellipsoid); if (when.defined(corridorGeometry._offsetAttribute)) { var applyOffsetValue = corridorGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; var length = attr.attributes.position.values.length; var applyOffset = new Uint8Array(length / 3); arrayFill.arrayFill(applyOffset, applyOffsetValue); attr.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute : 1, values: applyOffset }); } } var attributes = attr.attributes; var boundingSphere = BoundingSphere.BoundingSphere.fromVertices(attributes.position.values, undefined, 3); if (!vertexFormat.position) { attr.attributes.position.values = undefined; } return new GeometryAttribute.Geometry({ attributes : attributes, indices : attr.indices, primitiveType : PrimitiveType.PrimitiveType.TRIANGLES, boundingSphere : boundingSphere, offsetAttribute : corridorGeometry._offsetAttribute }); }; /** * @private */ CorridorGeometry.createShadowVolume = function(corridorGeometry, minHeightFunc, maxHeightFunc) { var granularity = corridorGeometry._granularity; var ellipsoid = corridorGeometry._ellipsoid; var minHeight = minHeightFunc(granularity, ellipsoid); var maxHeight = maxHeightFunc(granularity, ellipsoid); return new CorridorGeometry({ positions : corridorGeometry._positions, width : corridorGeometry._width, cornerType : corridorGeometry._cornerType, ellipsoid : ellipsoid, granularity : granularity, extrudedHeight : minHeight, height : maxHeight, vertexFormat : VertexFormat.VertexFormat.POSITION_ONLY, shadowVolume: true }); }; Object.defineProperties(CorridorGeometry.prototype, { /** * @private */ rectangle : { get : function() { if (!when.defined(this._rectangle)) { this._rectangle = computeRectangle(this._positions, this._ellipsoid, this._width, this._cornerType); } return this._rectangle; } }, /** * For remapping texture coordinates when rendering CorridorGeometries as GroundPrimitives. * * Corridors don't support stRotation, * so just return the corners of the original system. * @private */ textureCoordinateRotationPoints : { get : function() { return [0, 0, 0, 1, 1, 0]; } } }); function createCorridorGeometry(corridorGeometry, offset) { if (when.defined(offset)) { corridorGeometry = CorridorGeometry.unpack(corridorGeometry, offset); } corridorGeometry._ellipsoid = Cartesian2.Ellipsoid.clone(corridorGeometry._ellipsoid); return CorridorGeometry.createGeometry(corridorGeometry); } return createCorridorGeometry; });