// OpenVPN -- An application to securely tunnel IP networks // over a single port, with support for SSL/TLS-based // session authentication and key exchange, // packet encryption, packet authentication, and // packet compression. // // Copyright (C) 2012-2020 OpenVPN Inc. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License Version 3 // as published by the Free Software Foundation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program in the COPYING file. // If not, see <http://www.gnu.org/licenses/>. // API for random number implementations. #pragma once #include <string> #include <cstdint> #include <openvpn/common/size.hpp> #include <openvpn/common/rc.hpp> #include <openvpn/common/exception.hpp> #include <openvpn/random/randistrib.hpp> namespace openvpn { class RandomAPI : public RC<thread_unsafe_refcount> { public: typedef RCPtr<RandomAPI> Ptr; // Random algorithm name virtual std::string name() const = 0; // Return true if algorithm is crypto-strength virtual bool is_crypto() const = 0; // Fill buffer with random bytes virtual void rand_bytes(unsigned char *buf, size_t size) = 0; // Like rand_bytes, but don't throw exception. // Return true on successs, false on fail. virtual bool rand_bytes_noexcept(unsigned char *buf, size_t size) = 0; // Fill a data object with random bits template <typename T> void rand_fill(T& obj) { rand_bytes(reinterpret_cast<unsigned char *>(&obj), sizeof(T)); } // Return a data object with random bits template <typename T> T rand_get() { T ret; rand_fill(ret); return ret; } // Return a data object with random bits, always >= 0 for signed types template <typename T> T rand_get_positive() { T ret = rand_get<T>(); if (ret < 0) ret = -ret; return ret; } // Return a uniformly distributed random number in the range [0, end). // end must be > 0. template <typename T> T randrange(const T end) { return rand_get_positive<T>() % end; } // Return a uniformly distributed random number in the range [start, end]. template <typename T> T randrange(const T start, const T end) { if (start >= end) return start; else return start + rand_get_positive<T>() % (end - start + 1); } // Return a uniformly distributed random number in the range [0, end). // This version is strictly 32-bit only and optimizes by avoiding // integer division. std::uint32_t randrange32(const std::uint32_t end) { std::uint32_t r; rand_fill(r); return rand32_distribute(r, end); } // Return a uniformly distributed random number in the range [start, end]. // This version is strictly 32-bit only and optimizes by avoiding // integer division. std::uint32_t randrange32(const std::uint32_t start, const std::uint32_t end) { if (start >= end) return start; else return start + randrange32(end - start + 1); } // Return a random byte std::uint8_t randbyte() { std::uint8_t byte; rand_fill(byte); return byte; } // Return a random boolean bool randbool() { return bool(randbyte() & 1); } // Throw an exception if algorithm is not crypto-strength. // Be sure to always call this method before using an rng // for crypto purposes. void assert_crypto() const { if (!is_crypto()) throw Exception("RandomAPI: " + name() + " algorithm is not crypto-strength"); } // UniformRandomBitGenerator for std::shuffle typedef unsigned int result_type; static constexpr result_type min() { return result_type(0); } static constexpr result_type max() { return ~result_type(0); } result_type operator()() { return rand_get<result_type>(); } }; }