Newer
Older
DH_Apicture / src / views / voice / lamejs / src / js / Takehiro.js
@zhangqy zhangqy on 29 Nov 37 KB first commit
/*
 *	MP3 huffman table selecting and bit counting
 *
 *	Copyright (c) 1999-2005 Takehiro TOMINAGA
 *	Copyright (c) 2002-2005 Gabriel Bouvigne
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* $Id: Takehiro.java,v 1.26 2011/05/24 20:48:06 kenchis Exp $ */

//package mp3;

//import java.util.Arrays;
var common = require('./common.js');
var System = common.System;
var VbrMode = common.VbrMode;
var Float = common.Float;
var ShortBlock = common.ShortBlock;
var Util = common.Util;
var Arrays = common.Arrays;
var new_array_n = common.new_array_n;
var new_byte = common.new_byte;
var new_double = common.new_double;
var new_float = common.new_float;
var new_float_n = common.new_float_n;
var new_int = common.new_int;
var new_int_n = common.new_int_n;
var assert = common.assert;

var Encoder = require('./Encoder.js');
var Tables = require('./Tables.js');
var GrInfo = require('./GrInfo.js');
var QuantizePVT = require('./QuantizePVT.js');


function Takehiro() {

    var qupvt = null;
    this.qupvt = null;

    this.setModules = function (_qupvt) {
        this.qupvt = _qupvt;
        qupvt = _qupvt;
    }

    function Bits(b) {
        this.bits = 0 | b;
    }

    var subdv_table = [[0, 0], /* 0 bands */
        [0, 0], /* 1 bands */
        [0, 0], /* 2 bands */
        [0, 0], /* 3 bands */
        [0, 0], /* 4 bands */
        [0, 1], /* 5 bands */
        [1, 1], /* 6 bands */
        [1, 1], /* 7 bands */
        [1, 2], /* 8 bands */
        [2, 2], /* 9 bands */
        [2, 3], /* 10 bands */
        [2, 3], /* 11 bands */
        [3, 4], /* 12 bands */
        [3, 4], /* 13 bands */
        [3, 4], /* 14 bands */
        [4, 5], /* 15 bands */
        [4, 5], /* 16 bands */
        [4, 6], /* 17 bands */
        [5, 6], /* 18 bands */
        [5, 6], /* 19 bands */
        [5, 7], /* 20 bands */
        [6, 7], /* 21 bands */
        [6, 7], /* 22 bands */
    ];

    /**
     * nonlinear quantization of xr More accurate formula than the ISO formula.
     * Takes into account the fact that we are quantizing xr . ix, but we want
     * ix^4/3 to be as close as possible to x^4/3. (taking the nearest int would
     * mean ix is as close as possible to xr, which is different.)
     *
     * From Segher Boessenkool <segher@eastsite.nl> 11/1999
     *
     * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro Tominaga.
     * If you need the ASM code, check CVS circa Aug 2000.
     *
     * 01/2004: Optimizations by Gabriel Bouvigne
     */
    function quantize_lines_xrpow_01(l, istep, xr, xrPos, ix, ixPos) {
        var compareval0 = (1.0 - 0.4054) / istep;

        assert(l > 0);
        l = l >> 1;
        while ((l--) != 0) {
            ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1;
            ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1;
        }
    }

    /**
     * XRPOW_FTOI is a macro to convert floats to ints.<BR>
     * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]<BR>
     * ROUNDFAC= -0.0946<BR>
     *
     * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]<BR>
     * ROUNDFAC=0.4054<BR>
     *
     * Note: using floor() or 0| is extremely slow. On machines where the
     * TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile to write
     * some ASM for XRPOW_FTOI().
     */
    function quantize_lines_xrpow(l, istep, xr, xrPos, ix, ixPos) {
        assert(l > 0);

        l = l >> 1;
        var remaining = l % 2;
        l = l >> 1;
        while (l-- != 0) {
            var x0, x1, x2, x3;
            var rx0, rx1, rx2, rx3;

            x0 = xr[xrPos++] * istep;
            x1 = xr[xrPos++] * istep;
            rx0 = 0 | x0;
            x2 = xr[xrPos++] * istep;
            rx1 = 0 | x1;
            x3 = xr[xrPos++] * istep;
            rx2 = 0 | x2;
            x0 += qupvt.adj43[rx0];
            rx3 = 0 | x3;
            x1 += qupvt.adj43[rx1];
            ix[ixPos++] = 0 | x0;
            x2 += qupvt.adj43[rx2];
            ix[ixPos++] = 0 | x1;
            x3 += qupvt.adj43[rx3];
            ix[ixPos++] = 0 | x2;
            ix[ixPos++] = 0 | x3;
        }
        if (remaining != 0) {
            var x0, x1;
            var rx0, rx1;

            x0 = xr[xrPos++] * istep;
            x1 = xr[xrPos++] * istep;
            rx0 = 0 | x0;
            rx1 = 0 | x1;
            x0 += qupvt.adj43[rx0];
            x1 += qupvt.adj43[rx1];
            ix[ixPos++] = 0 | x0;
            ix[ixPos++] = 0 | x1;
        }
    }

    /**
     * Quantization function This function will select which lines to quantize
     * and call the proper quantization function
     */
    function quantize_xrpow(xp, pi, istep, codInfo, prevNoise) {
        /* quantize on xr^(3/4) instead of xr */
        var sfb;
        var sfbmax;
        var j = 0;
        var prev_data_use;
        var accumulate = 0;
        var accumulate01 = 0;
        var xpPos = 0;
        var iData = pi;
        var iDataPos = 0;
        var acc_iData = iData;
        var acc_iDataPos = 0;
        var acc_xp = xp;
        var acc_xpPos = 0;

        /*
         * Reusing previously computed data does not seems to work if global
         * gain is changed. Finding why it behaves this way would allow to use a
         * cache of previously computed values (let's 10 cached values per sfb)
         * that would probably provide a noticeable speedup
         */
        prev_data_use = (prevNoise != null && (codInfo.global_gain == prevNoise.global_gain));

        if (codInfo.block_type == Encoder.SHORT_TYPE)
            sfbmax = 38;
        else
            sfbmax = 21;

        for (sfb = 0; sfb <= sfbmax; sfb++) {
            var step = -1;

            if (prev_data_use || codInfo.block_type == Encoder.NORM_TYPE) {
                step = codInfo.global_gain
                    - ((codInfo.scalefac[sfb] + (codInfo.preflag != 0 ? qupvt.pretab[sfb]
                        : 0)) << (codInfo.scalefac_scale + 1))
                    - codInfo.subblock_gain[codInfo.window[sfb]] * 8;
            }
            assert(codInfo.width[sfb] >= 0);
            if (prev_data_use && (prevNoise.step[sfb] == step)) {
                /*
                 * do not recompute this part, but compute accumulated lines
                 */
                if (accumulate != 0) {
                    quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos,
                        acc_iData, acc_iDataPos);
                    accumulate = 0;
                }
                if (accumulate01 != 0) {
                    quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
                        acc_xpPos, acc_iData, acc_iDataPos);
                    accumulate01 = 0;
                }
            } else { /* should compute this part */
                var l = codInfo.width[sfb];

                if ((j + codInfo.width[sfb]) > codInfo.max_nonzero_coeff) {
                    /* do not compute upper zero part */
                    var usefullsize;
                    usefullsize = codInfo.max_nonzero_coeff - j + 1;
                    Arrays.fill(pi, codInfo.max_nonzero_coeff, 576, 0);
                    l = usefullsize;

                    if (l < 0) {
                        l = 0;
                    }

                    /* no need to compute higher sfb values */
                    sfb = sfbmax + 1;
                }

                /* accumulate lines to quantize */
                if (0 == accumulate && 0 == accumulate01) {
                    acc_iData = iData;
                    acc_iDataPos = iDataPos;
                    acc_xp = xp;
                    acc_xpPos = xpPos;
                }
                if (prevNoise != null && prevNoise.sfb_count1 > 0
                    && sfb >= prevNoise.sfb_count1
                    && prevNoise.step[sfb] > 0
                    && step >= prevNoise.step[sfb]) {

                    if (accumulate != 0) {
                        quantize_lines_xrpow(accumulate, istep, acc_xp,
                            acc_xpPos, acc_iData, acc_iDataPos);
                        accumulate = 0;
                        acc_iData = iData;
                        acc_iDataPos = iDataPos;
                        acc_xp = xp;
                        acc_xpPos = xpPos;
                    }
                    accumulate01 += l;
                } else {
                    if (accumulate01 != 0) {
                        quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
                            acc_xpPos, acc_iData, acc_iDataPos);
                        accumulate01 = 0;
                        acc_iData = iData;
                        acc_iDataPos = iDataPos;
                        acc_xp = xp;
                        acc_xpPos = xpPos;
                    }
                    accumulate += l;
                }

                if (l <= 0) {
                    /*
                     * rh: 20040215 may happen due to "prev_data_use"
                     * optimization
                     */
                    if (accumulate01 != 0) {
                        quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
                            acc_xpPos, acc_iData, acc_iDataPos);
                        accumulate01 = 0;
                    }
                    if (accumulate != 0) {
                        quantize_lines_xrpow(accumulate, istep, acc_xp,
                            acc_xpPos, acc_iData, acc_iDataPos);
                        accumulate = 0;
                    }

                    break;
                    /* ends for-loop */
                }
            }
            if (sfb <= sfbmax) {
                iDataPos += codInfo.width[sfb];
                xpPos += codInfo.width[sfb];
                j += codInfo.width[sfb];
            }
        }
        if (accumulate != 0) { /* last data part */
            quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos,
                acc_iData, acc_iDataPos);
            accumulate = 0;
        }
        if (accumulate01 != 0) { /* last data part */
            quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos,
                acc_iData, acc_iDataPos);
            accumulate01 = 0;
        }

    }

    /**
     * ix_max
     */
    function ix_max(ix, ixPos, endPos) {
        var max1 = 0, max2 = 0;

        do {
            var x1 = ix[ixPos++];
            var x2 = ix[ixPos++];
            if (max1 < x1)
                max1 = x1;

            if (max2 < x2)
                max2 = x2;
        } while (ixPos < endPos);
        if (max1 < max2)
            max1 = max2;
        return max1;
    }

    function count_bit_ESC(ix, ixPos, end, t1, t2, s) {
        /* ESC-table is used */
        var linbits = Tables.ht[t1].xlen * 65536 + Tables.ht[t2].xlen;
        var sum = 0, sum2;

        do {
            var x = ix[ixPos++];
            var y = ix[ixPos++];

            if (x != 0) {
                if (x > 14) {
                    x = 15;
                    sum += linbits;
                }
                x *= 16;
            }

            if (y != 0) {
                if (y > 14) {
                    y = 15;
                    sum += linbits;
                }
                x += y;
            }

            sum += Tables.largetbl[x];
        } while (ixPos < end);

        sum2 = sum & 0xffff;
        sum >>= 16;

        if (sum > sum2) {
            sum = sum2;
            t1 = t2;
        }

        s.bits += sum;
        return t1;
    }

    function count_bit_noESC(ix, ixPos, end, s) {
        /* No ESC-words */
        var sum1 = 0;
        var hlen1 = Tables.ht[1].hlen;

        do {
            var x = ix[ixPos + 0] * 2 + ix[ixPos + 1];
            ixPos += 2;
            sum1 += hlen1[x];
        } while (ixPos < end);

        s.bits += sum1;
        return 1;
    }

    function count_bit_noESC_from2(ix, ixPos, end, t1, s) {
        /* No ESC-words */
        var sum = 0, sum2;
        var xlen = Tables.ht[t1].xlen;
        var hlen;
        if (t1 == 2)
            hlen = Tables.table23;
        else
            hlen = Tables.table56;

        do {
            var x = ix[ixPos + 0] * xlen + ix[ixPos + 1];
            ixPos += 2;
            sum += hlen[x];
        } while (ixPos < end);

        sum2 = sum & 0xffff;
        sum >>= 16;

        if (sum > sum2) {
            sum = sum2;
            t1++;
        }

        s.bits += sum;
        return t1;
    }

    function count_bit_noESC_from3(ix, ixPos, end, t1, s) {
        /* No ESC-words */
        var sum1 = 0;
        var sum2 = 0;
        var sum3 = 0;
        var xlen = Tables.ht[t1].xlen;
        var hlen1 = Tables.ht[t1].hlen;
        var hlen2 = Tables.ht[t1 + 1].hlen;
        var hlen3 = Tables.ht[t1 + 2].hlen;

        do {
            var x = ix[ixPos + 0] * xlen + ix[ixPos + 1];
            ixPos += 2;
            sum1 += hlen1[x];
            sum2 += hlen2[x];
            sum3 += hlen3[x];
        } while (ixPos < end);
        var t = t1;
        if (sum1 > sum2) {
            sum1 = sum2;
            t++;
        }
        if (sum1 > sum3) {
            sum1 = sum3;
            t = t1 + 2;
        }
        s.bits += sum1;

        return t;
    }

    /*************************************************************************/
    /* choose table */
    /*************************************************************************/

    var huf_tbl_noESC = [1, 2, 5, 7, 7, 10, 10, 13, 13,
        13, 13, 13, 13, 13, 13];

    /**
     * Choose the Huffman table that will encode ix[begin..end] with the fewest
     * bits.
     *
     * Note: This code contains knowledge about the sizes and characteristics of
     * the Huffman tables as defined in the IS (Table B.7), and will not work
     * with any arbitrary tables.
     */
    function choose_table(ix, ixPos, endPos, s) {
        var max = ix_max(ix, ixPos, endPos);

        switch (max) {
            case 0:
                return max;

            case 1:
                return count_bit_noESC(ix, ixPos, endPos, s);

            case 2:
            case 3:
                return count_bit_noESC_from2(ix, ixPos, endPos,
                    huf_tbl_noESC[max - 1], s);

            case 4:
            case 5:
            case 6:
            case 7:
            case 8:
            case 9:
            case 10:
            case 11:
            case 12:
            case 13:
            case 14:
            case 15:
                return count_bit_noESC_from3(ix, ixPos, endPos,
                    huf_tbl_noESC[max - 1], s);

            default:
                /* try tables with linbits */
                if (max > QuantizePVT.IXMAX_VAL) {
                    s.bits = QuantizePVT.LARGE_BITS;
                    return -1;
                }
                max -= 15;
                var choice2;
                for (choice2 = 24; choice2 < 32; choice2++) {
                    if (Tables.ht[choice2].linmax >= max) {
                        break;
                    }
                }
                var choice;
                for (choice = choice2 - 8; choice < 24; choice++) {
                    if (Tables.ht[choice].linmax >= max) {
                        break;
                    }
                }
                return count_bit_ESC(ix, ixPos, endPos, choice, choice2, s);
        }
    }

    /**
     * count_bit
     */
    this.noquant_count_bits = function (gfc, gi, prev_noise) {
        var ix = gi.l3_enc;
        var i = Math.min(576, ((gi.max_nonzero_coeff + 2) >> 1) << 1);

        if (prev_noise != null)
            prev_noise.sfb_count1 = 0;

        /* Determine count1 region */
        for (; i > 1; i -= 2)
            if ((ix[i - 1] | ix[i - 2]) != 0)
                break;
        gi.count1 = i;

        /* Determines the number of bits to encode the quadruples. */
        var a1 = 0;
        var a2 = 0;
        for (; i > 3; i -= 4) {
            var p;
            /* hack to check if all values <= 1 */
            //throw "TODO: HACK         if ((((long) ix[i - 1] | (long) ix[i - 2] | (long) ix[i - 3] | (long) ix[i - 4]) & 0xffffffffL) > 1L        "
            //if (true) {
            if (((ix[i - 1] | ix[i - 2] | ix[i - 3] | ix[i - 4]) & 0x7fffffff) > 1) {
                break;
            }
            p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
            a1 += Tables.t32l[p];
            a2 += Tables.t33l[p];
        }
        var bits = a1;
        gi.count1table_select = 0;
        if (a1 > a2) {
            bits = a2;
            gi.count1table_select = 1;
        }

        gi.count1bits = bits;
        gi.big_values = i;
        if (i == 0)
            return bits;

        if (gi.block_type == Encoder.SHORT_TYPE) {
            a1 = 3 * gfc.scalefac_band.s[3];
            if (a1 > gi.big_values)
                a1 = gi.big_values;
            a2 = gi.big_values;

        } else if (gi.block_type == Encoder.NORM_TYPE) {
            assert(i <= 576);
            /* bv_scf has 576 entries (0..575) */
            a1 = gi.region0_count = gfc.bv_scf[i - 2];
            a2 = gi.region1_count = gfc.bv_scf[i - 1];

            assert(a1 + a2 + 2 < Encoder.SBPSY_l);
            a2 = gfc.scalefac_band.l[a1 + a2 + 2];
            a1 = gfc.scalefac_band.l[a1 + 1];
            if (a2 < i) {
                var bi = new Bits(bits);
                gi.table_select[2] = choose_table(ix, a2, i, bi);
                bits = bi.bits;
            }
        } else {
            gi.region0_count = 7;
            /* gi.region1_count = SBPSY_l - 7 - 1; */
            gi.region1_count = Encoder.SBMAX_l - 1 - 7 - 1;
            a1 = gfc.scalefac_band.l[7 + 1];
            a2 = i;
            if (a1 > a2) {
                a1 = a2;
            }
        }

        /* have to allow for the case when bigvalues < region0 < region1 */
        /* (and region0, region1 are ignored) */
        a1 = Math.min(a1, i);
        a2 = Math.min(a2, i);

        assert(a1 >= 0);
        assert(a2 >= 0);

        /* Count the number of bits necessary to code the bigvalues region. */
        if (0 < a1) {
            var bi = new Bits(bits);
            gi.table_select[0] = choose_table(ix, 0, a1, bi);
            bits = bi.bits;
        }
        if (a1 < a2) {
            var bi = new Bits(bits);
            gi.table_select[1] = choose_table(ix, a1, a2, bi);
            bits = bi.bits;
        }
        if (gfc.use_best_huffman == 2) {
            gi.part2_3_length = bits;
            best_huffman_divide(gfc, gi);
            bits = gi.part2_3_length;
        }

        if (prev_noise != null) {
            if (gi.block_type == Encoder.NORM_TYPE) {
                var sfb = 0;
                while (gfc.scalefac_band.l[sfb] < gi.big_values) {
                    sfb++;
                }
                prev_noise.sfb_count1 = sfb;
            }
        }

        return bits;
    }

    this.count_bits = function (gfc, xr, gi, prev_noise) {
        var ix = gi.l3_enc;

        /* since quantize_xrpow uses table lookup, we need to check this first: */
        var w = (QuantizePVT.IXMAX_VAL) / qupvt.IPOW20(gi.global_gain);

        if (gi.xrpow_max > w)
            return QuantizePVT.LARGE_BITS;

        quantize_xrpow(xr, ix, qupvt.IPOW20(gi.global_gain), gi, prev_noise);

        if ((gfc.substep_shaping & 2) != 0) {
            var j = 0;
            /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
            var gain = gi.global_gain + gi.scalefac_scale;
            var roundfac = 0.634521682242439 / qupvt.IPOW20(gain);
            for (var sfb = 0; sfb < gi.sfbmax; sfb++) {
                var width = gi.width[sfb];
                assert(width >= 0);
                if (0 == gfc.pseudohalf[sfb]) {
                    j += width;
                } else {
                    var k;
                    for (k = j, j += width; k < j; ++k) {
                        ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
                    }
                }
            }
        }
        return this.noquant_count_bits(gfc, gi, prev_noise);
    }

    /**
     * re-calculate the best scalefac_compress using scfsi the saved bits are
     * kept in the bit reservoir.
     */
    function recalc_divide_init(gfc, cod_info, ix, r01_bits, r01_div, r0_tbl, r1_tbl) {
        var bigv = cod_info.big_values;

        for (var r0 = 0; r0 <= 7 + 15; r0++) {
            r01_bits[r0] = QuantizePVT.LARGE_BITS;
        }

        for (var r0 = 0; r0 < 16; r0++) {
            var a1 = gfc.scalefac_band.l[r0 + 1];
            if (a1 >= bigv)
                break;
            var r0bits = 0;
            var bi = new Bits(r0bits);
            var r0t = choose_table(ix, 0, a1, bi);
            r0bits = bi.bits;

            for (var r1 = 0; r1 < 8; r1++) {
                var a2 = gfc.scalefac_band.l[r0 + r1 + 2];
                if (a2 >= bigv)
                    break;
                var bits = r0bits;
                bi = new Bits(bits);
                var r1t = choose_table(ix, a1, a2, bi);
                bits = bi.bits;
                if (r01_bits[r0 + r1] > bits) {
                    r01_bits[r0 + r1] = bits;
                    r01_div[r0 + r1] = r0;
                    r0_tbl[r0 + r1] = r0t;
                    r1_tbl[r0 + r1] = r1t;
                }
            }
        }
    }

    function recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl) {
        var bigv = cod_info2.big_values;

        for (var r2 = 2; r2 < Encoder.SBMAX_l + 1; r2++) {
            var a2 = gfc.scalefac_band.l[r2];
            if (a2 >= bigv)
                break;
            var bits = r01_bits[r2 - 2] + cod_info2.count1bits;
            if (gi.part2_3_length <= bits)
                break;

            var bi = new Bits(bits);
            var r2t = choose_table(ix, a2, bigv, bi);
            bits = bi.bits;
            if (gi.part2_3_length <= bits)
                continue;

            gi.assign(cod_info2);
            gi.part2_3_length = bits;
            gi.region0_count = r01_div[r2 - 2];
            gi.region1_count = r2 - 2 - r01_div[r2 - 2];
            gi.table_select[0] = r0_tbl[r2 - 2];
            gi.table_select[1] = r1_tbl[r2 - 2];
            gi.table_select[2] = r2t;
        }
    }

    this.best_huffman_divide = function (gfc, gi) {
        var cod_info2 = new GrInfo();
        var ix = gi.l3_enc;
        var r01_bits = new_int(7 + 15 + 1);
        var r01_div = new_int(7 + 15 + 1);
        var r0_tbl = new_int(7 + 15 + 1);
        var r1_tbl = new_int(7 + 15 + 1);

        /* SHORT BLOCK stuff fails for MPEG2 */
        if (gi.block_type == Encoder.SHORT_TYPE && gfc.mode_gr == 1)
            return;

        cod_info2.assign(gi);
        if (gi.block_type == Encoder.NORM_TYPE) {
            recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
            recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div,
                r0_tbl, r1_tbl);
        }
        var i = cod_info2.big_values;
        if (i == 0 || (ix[i - 2] | ix[i - 1]) > 1)
            return;

        i = gi.count1 + 2;
        if (i > 576)
            return;

        /* Determines the number of bits to encode the quadruples. */
        cod_info2.assign(gi);
        cod_info2.count1 = i;
        var a1 = 0;
        var a2 = 0;

        assert(i <= 576);

        for (; i > cod_info2.big_values; i -= 4) {
            var p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2
                + ix[i - 1];
            a1 += Tables.t32l[p];
            a2 += Tables.t33l[p];
        }
        cod_info2.big_values = i;

        cod_info2.count1table_select = 0;
        if (a1 > a2) {
            a1 = a2;
            cod_info2.count1table_select = 1;
        }

        cod_info2.count1bits = a1;

        if (cod_info2.block_type == Encoder.NORM_TYPE)
            recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div,
                r0_tbl, r1_tbl);
        else {
            /* Count the number of bits necessary to code the bigvalues region. */
            cod_info2.part2_3_length = a1;
            a1 = gfc.scalefac_band.l[7 + 1];
            if (a1 > i) {
                a1 = i;
            }
            if (a1 > 0) {
                var bi = new Bits(cod_info2.part2_3_length);
                cod_info2.table_select[0] = choose_table(ix, 0, a1, bi);
                cod_info2.part2_3_length = bi.bits;
            }
            if (i > a1) {
                var bi = new Bits(cod_info2.part2_3_length);
                cod_info2.table_select[1] = choose_table(ix, a1, i, bi);
                cod_info2.part2_3_length = bi.bits;
            }
            if (gi.part2_3_length > cod_info2.part2_3_length)
                gi.assign(cod_info2);
        }
    }

    var slen1_n = [1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16];
    var slen2_n = [1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8];
    var slen1_tab = [0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4];
    var slen2_tab = [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3];
    Takehiro.slen1_tab = slen1_tab;
    Takehiro.slen2_tab = slen2_tab;

    function scfsi_calc(ch, l3_side) {
        var sfb;
        var gi = l3_side.tt[1][ch];
        var g0 = l3_side.tt[0][ch];

        for (var i = 0; i < Tables.scfsi_band.length - 1; i++) {
            for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) {
                if (g0.scalefac[sfb] != gi.scalefac[sfb]
                    && gi.scalefac[sfb] >= 0)
                    break;
            }
            if (sfb == Tables.scfsi_band[i + 1]) {
                for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) {
                    gi.scalefac[sfb] = -1;
                }
                l3_side.scfsi[ch][i] = 1;
            }
        }
        var s1 = 0;
        var c1 = 0;
        for (sfb = 0; sfb < 11; sfb++) {
            if (gi.scalefac[sfb] == -1)
                continue;
            c1++;
            if (s1 < gi.scalefac[sfb])
                s1 = gi.scalefac[sfb];
        }
        var s2 = 0;
        var c2 = 0;
        for (; sfb < Encoder.SBPSY_l; sfb++) {
            if (gi.scalefac[sfb] == -1)
                continue;
            c2++;
            if (s2 < gi.scalefac[sfb])
                s2 = gi.scalefac[sfb];
        }

        for (var i = 0; i < 16; i++) {
            if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
                var c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
                if (gi.part2_length > c) {
                    gi.part2_length = c;
                    gi.scalefac_compress = i;
                }
            }
        }
    }

    /**
     * Find the optimal way to store the scalefactors. Only call this routine
     * after final scalefactors have been chosen and the channel/granule will
     * not be re-encoded.
     */
    this.best_scalefac_store = function (gfc, gr, ch, l3_side) {
        /* use scalefac_scale if we can */
        var gi = l3_side.tt[gr][ch];
        var sfb, i, j, l;
        var recalc = 0;

        /*
         * remove scalefacs from bands with ix=0. This idea comes from the AAC
         * ISO docs. added mt 3/00
         */
        /* check if l3_enc=0 */
        j = 0;
        for (sfb = 0; sfb < gi.sfbmax; sfb++) {
            var width = gi.width[sfb];
            assert(width >= 0);
            j += width;
            for (l = -width; l < 0; l++) {
                if (gi.l3_enc[l + j] != 0)
                    break;
            }
            if (l == 0)
                gi.scalefac[sfb] = recalc = -2;
            /* anything goes. */
            /*
             * only best_scalefac_store and calc_scfsi know--and only they
             * should know--about the magic number -2.
             */
        }

        if (0 == gi.scalefac_scale && 0 == gi.preflag) {
            var s = 0;
            for (sfb = 0; sfb < gi.sfbmax; sfb++)
                if (gi.scalefac[sfb] > 0)
                    s |= gi.scalefac[sfb];

            if (0 == (s & 1) && s != 0) {
                for (sfb = 0; sfb < gi.sfbmax; sfb++)
                    if (gi.scalefac[sfb] > 0)
                        gi.scalefac[sfb] >>= 1;

                gi.scalefac_scale = recalc = 1;
            }
        }

        if (0 == gi.preflag && gi.block_type != Encoder.SHORT_TYPE
            && gfc.mode_gr == 2) {
            for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
                if (gi.scalefac[sfb] < qupvt.pretab[sfb]
                    && gi.scalefac[sfb] != -2)
                    break;
            if (sfb == Encoder.SBPSY_l) {
                for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
                    if (gi.scalefac[sfb] > 0)
                        gi.scalefac[sfb] -= qupvt.pretab[sfb];

                gi.preflag = recalc = 1;
            }
        }

        for (i = 0; i < 4; i++)
            l3_side.scfsi[ch][i] = 0;

        if (gfc.mode_gr == 2 && gr == 1
            && l3_side.tt[0][ch].block_type != Encoder.SHORT_TYPE
            && l3_side.tt[1][ch].block_type != Encoder.SHORT_TYPE) {
            scfsi_calc(ch, l3_side);
            recalc = 0;
        }
        for (sfb = 0; sfb < gi.sfbmax; sfb++) {
            if (gi.scalefac[sfb] == -2) {
                gi.scalefac[sfb] = 0;
                /* if anything goes, then 0 is a good choice */
            }
        }
        if (recalc != 0) {
            if (gfc.mode_gr == 2) {
                this.scale_bitcount(gi);
            } else {
                this.scale_bitcount_lsf(gfc, gi);
            }
        }
    }

    function all_scalefactors_not_negative(scalefac, n) {
        for (var i = 0; i < n; ++i) {
            if (scalefac[i] < 0)
                return false;
        }
        return true;
    }

    /**
     * number of bits used to encode scalefacs.
     *
     * 18*slen1_tab[i] + 18*slen2_tab[i]
     */
    var scale_short = [0, 18, 36, 54, 54, 36, 54, 72,
        54, 72, 90, 72, 90, 108, 108, 126];

    /**
     * number of bits used to encode scalefacs.
     *
     * 17*slen1_tab[i] + 18*slen2_tab[i]
     */
    var scale_mixed = [0, 18, 36, 54, 51, 35, 53, 71,
        52, 70, 88, 69, 87, 105, 104, 122];

    /**
     * number of bits used to encode scalefacs.
     *
     * 11*slen1_tab[i] + 10*slen2_tab[i]
     */
    var scale_long = [0, 10, 20, 30, 33, 21, 31, 41, 32, 42,
        52, 43, 53, 63, 64, 74];

    /**
     * Also calculates the number of bits necessary to code the scalefactors.
     */
    this.scale_bitcount = function (cod_info) {
        var k, sfb, max_slen1 = 0, max_slen2 = 0;

        /* maximum values */
        var tab;
        var scalefac = cod_info.scalefac;

        assert(all_scalefactors_not_negative(scalefac, cod_info.sfbmax));

        if (cod_info.block_type == Encoder.SHORT_TYPE) {
            tab = scale_short;
            if (cod_info.mixed_block_flag != 0)
                tab = scale_mixed;
        } else { /* block_type == 1,2,or 3 */
            tab = scale_long;
            if (0 == cod_info.preflag) {
                for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
                    if (scalefac[sfb] < qupvt.pretab[sfb])
                        break;

                if (sfb == Encoder.SBPSY_l) {
                    cod_info.preflag = 1;
                    for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
                        scalefac[sfb] -= qupvt.pretab[sfb];
                }
            }
        }

        for (sfb = 0; sfb < cod_info.sfbdivide; sfb++)
            if (max_slen1 < scalefac[sfb])
                max_slen1 = scalefac[sfb];

        for (; sfb < cod_info.sfbmax; sfb++)
            if (max_slen2 < scalefac[sfb])
                max_slen2 = scalefac[sfb];

        /*
         * from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99 loop over *all*
         * posible values of scalefac_compress to find the one which uses the
         * smallest number of bits. ISO would stop at first valid index
         */
        cod_info.part2_length = QuantizePVT.LARGE_BITS;
        for (k = 0; k < 16; k++) {
            if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
                && cod_info.part2_length > tab[k]) {
                cod_info.part2_length = tab[k];
                cod_info.scalefac_compress = k;
            }
        }
        return cod_info.part2_length == QuantizePVT.LARGE_BITS;
    }

    /**
     * table of largest scalefactor values for MPEG2
     */
    var max_range_sfac_tab = [[15, 15, 7, 7],
        [15, 15, 7, 0], [7, 3, 0, 0], [15, 31, 31, 0],
        [7, 7, 7, 0], [3, 3, 0, 0]];

    /**
     * Also counts the number of bits to encode the scalefacs but for MPEG 2
     * Lower sampling frequencies (24, 22.05 and 16 kHz.)
     *
     * This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS,
     * "Audio Decoding Layer III"
     */
    this.scale_bitcount_lsf = function (gfc, cod_info) {
        var table_number, row_in_table, partition, nr_sfb, window;
        var over;
        var i, sfb;
        var max_sfac = new_int(4);
//var partition_table;
        var scalefac = cod_info.scalefac;

        /*
         * Set partition table. Note that should try to use table one, but do
         * not yet...
         */
        if (cod_info.preflag != 0)
            table_number = 2;
        else
            table_number = 0;

        for (i = 0; i < 4; i++)
            max_sfac[i] = 0;

        if (cod_info.block_type == Encoder.SHORT_TYPE) {
            row_in_table = 1;
            var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
            for (sfb = 0, partition = 0; partition < 4; partition++) {
                nr_sfb = partition_table[partition] / 3;
                for (i = 0; i < nr_sfb; i++, sfb++)
                    for (window = 0; window < 3; window++)
                        if (scalefac[sfb * 3 + window] > max_sfac[partition])
                            max_sfac[partition] = scalefac[sfb * 3 + window];
            }
        } else {
            row_in_table = 0;
            var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
            for (sfb = 0, partition = 0; partition < 4; partition++) {
                nr_sfb = partition_table[partition];
                for (i = 0; i < nr_sfb; i++, sfb++)
                    if (scalefac[sfb] > max_sfac[partition])
                        max_sfac[partition] = scalefac[sfb];
            }
        }

        for (over = false, partition = 0; partition < 4; partition++) {
            if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
                over = true;
        }
        if (!over) {
            var slen1, slen2, slen3, slen4;

            cod_info.sfb_partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
            for (partition = 0; partition < 4; partition++)
                cod_info.slen[partition] = log2tab[max_sfac[partition]];

            /* set scalefac_compress */
            slen1 = cod_info.slen[0];
            slen2 = cod_info.slen[1];
            slen3 = cod_info.slen[2];
            slen4 = cod_info.slen[3];

            switch (table_number) {
                case 0:
                    cod_info.scalefac_compress = (((slen1 * 5) + slen2) << 4)
                        + (slen3 << 2) + slen4;
                    break;

                case 1:
                    cod_info.scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
                        + slen3;
                    break;

                case 2:
                    cod_info.scalefac_compress = 500 + (slen1 * 3) + slen2;
                    break;

                default:
                    System.err.printf("intensity stereo not implemented yet\n");
                    break;
            }
        }
        if (!over) {
            assert(cod_info.sfb_partition_table != null);
            cod_info.part2_length = 0;
            for (partition = 0; partition < 4; partition++)
                cod_info.part2_length += cod_info.slen[partition]
                    * cod_info.sfb_partition_table[partition];
        }
        return over;
    }

    /*
     * Since no bands have been over-amplified, we can set scalefac_compress and
     * slen[] for the formatter
     */
    var log2tab = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
        4, 4, 4, 4];

    this.huffman_init = function (gfc) {
        for (var i = 2; i <= 576; i += 2) {
            var scfb_anz = 0, bv_index;
            while (gfc.scalefac_band.l[++scfb_anz] < i)
                ;

            bv_index = subdv_table[scfb_anz][0]; // .region0_count
            while (gfc.scalefac_band.l[bv_index + 1] > i)
                bv_index--;

            if (bv_index < 0) {
                /*
                 * this is an indication that everything is going to be encoded
                 * as region0: bigvalues < region0 < region1 so lets set
                 * region0, region1 to some value larger than bigvalues
                 */
                bv_index = subdv_table[scfb_anz][0]; // .region0_count
            }

            gfc.bv_scf[i - 2] = bv_index;

            bv_index = subdv_table[scfb_anz][1]; // .region1_count
            while (gfc.scalefac_band.l[bv_index + gfc.bv_scf[i - 2] + 2] > i)
                bv_index--;

            if (bv_index < 0) {
                bv_index = subdv_table[scfb_anz][1]; // .region1_count
            }

            gfc.bv_scf[i - 1] = bv_index;
        }
    }
}

module.exports = Takehiro;